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Evolutionary robotics techniques used
to model information and control of
visually guided braking

Didem Kadıhasanoğlu1, Randall D Beer2,3 and Geoffrey P Bingham2,4

Abstract
This paper utilizes evolutionary robotics techniques as a hypothesis generator to explore optical variables and control
strategies that could be used to solve a driving-like braking task. Given such a task, humans exhibit two different braking
behaviors: continuously regulated braking and impulsive braking. Based on an oft-used experimental task in human per-
ception/action research, a series of evolutionary robotics simulations were developed to explore the space of possible
braking strategies by examining how braking strategies change as the optical information is manipulated. Our results can
be summarized as follows: (1) behaviors similar to human behavior were observed only when the constraints were
selected correctly; (2) the optical variables t and proportional rate yielded significantly better braking performance; (3)
two different classes of impulsive braking behaviors were observed, including one not reported in previous studies: dis-
crete impulsive braking and oscillatory impulsive braking; (4) the optical variable t is used to initiate and terminate brak-
ing; (5) the evolved model agents use a proportional rate control strategy to regulate braking continuously. We argue
that combining psychological experiments and evolutionary robotics simulations is a promising research methodology
that is useful for testing existing hypotheses and generating new ones.
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1 Introduction

Inspired by Darwinian evolution, evolutionary robotics
is a relatively new technique for designing autonomous
robots and their control systems using population-
based artificial evolution (Holland, 1975; Nolfi &
Floreano, 2000). Recently, there is a growing interest in
applying the evolutionary robotics techniques to model
human cognition and behavior. These techniques have
been used to develop models of associative learning
(Phattanasri, Chiel & Beer, 2007; Izquierdo, Harvey &
Beer, 2008), selective attention (Ward & Ward, 2008),
categorical perception (Beer, 2003) and relational cate-
gorization (Williams, Beer & Gasser, 2008), agency
detection (Iizuka & Di Paolo, 2007), and the famous
‘‘A-not-B’’ error (Piaget, 1954) exhibited by 7–12-
month-old infants (Wood & Di Paolo, 2007). The main
motivations for using the evolutionary robotics tech-
niques in the study of human cognition and behavior
are: (1) to enhance our theoretical thinking and knowl-
edge; (2) to provide existence proofs and minimal con-
ditions of a cognitive phenomenon; and (3) to test
existing hypotheses about a cognitive phenomenon and
to form novel ones.

What makes the evolutionary robotics techniques an
attractive modeling tool for cognitive scientists and psy-
chologists is the methodological advantages that they
offer. In evolutionary robotics, better solutions to a
problem are evolved from an initial population of can-
didate solutions. Generally, the problem to be solved is
to evolve a robot that exhibits a behavior of interest
and the solutions are the parameters of an artificial
neural network controlling the robot to generate the
specified behavior. The initial population of candidate
solutions is created randomly to explore the entire
search space that contains all possible solutions. Also,
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different runs of the evolutionary algorithm can pro-
duce different solutions, most of which cannot be dis-
covered by thought alone. Usually, these solutions are
different from the expectations of the experimenter. As
a result, evolutionary robotics techniques enable us to
test the existing hypotheses about an observed behavior
as well as to form novel hypotheses and ideas that can
be tested in further empirical studies. The analysis of
the evolved models can also provide insights into the
mechanisms underlying the observed behavior (e.g.,
Izquierdo & Beer’s (2013) work on the klinotaxis beha-
vior of the nematode worm Caenorhabditis elegans).

Continuous-time recurrent neural networks
(CTRNN) are one of the most commonly used control-
lers in evolutionary robotics due to their dynamical
properties. It has been proven that CTRNNs are uni-
versal approximators of smooth dynamics, which
means that given a dynamical system, there exists a
CTRNN that can approximate its behavior for any
finite interval of time (Funahashi & Nakamura, 1993;
Kimura & Nakano, 1998). It is also well known that
even small CTRNNs can exhibit a wide variety of com-
plex dynamics (Beer, 1995), which makes them well sui-
ted: (1) for evolving adaptive, dynamically complex
and non-reactive behaviors; and consequently, (2) for
exploring a wide range of possible solutions to a given
problem.

Considering the sensory and motor capabilities of
evolved model agents, ecological psychology in general,
and visual control of locomotion in particular, provides
an excellent research area in which the evolutionary
robotics techniques can be used. Visual control of brak-
ing, which is an essential part of locomotion, arises in
many situations such as while driving or walking in a
crowded street. It can be described as approaching an
object to make contact without collision. The work pre-
sented in this paper investigates the visual control of
braking from an ecological psychology approach to
perception and action developed by James J. Gibson
(1979). The central idea of the ecological approach is
that behavior is controlled by the task specific informa-
tion that is available in the optic flow and it emerges as
control laws relate information variables to action para-
meters (Warren, 2006).

In this paper, we focused on visually guided braking
in the context of a driving-like braking task, i.e., the
task of slowing down from a high speed to stop safely
before reaching an obstacle in the path of motion.
Given a driving-like braking task, humans exhibit two
different classes of braking behaviors: (1) continuously
regulated braking and (2) impulsive braking in which
deceleration is used discretely. For continuously regu-
lated braking, different control strategies that are based
on different information variables have been proposed
in the literature and different studies have provided evi-
dence for different strategies. No studies have yet inves-
tigated the information variable(s) used in impulsive

braking and how braking is controlled on the basis of
this information.

This paper utilized the evolutionary robotics tech-
niques as a hypothesis generator to explore the space of
possible control strategies that could be used to solve a
driving-like braking task. We designed a series of evo-
lutionary robotics simulations to aid in resolving the
existing questions as to the control strategies underly-
ing continuously regulated braking and to investigate
the information variable(s) and the control strategy(ies)
that could be used in impulsive braking. Model agents
with CTRNN controllers were evolved to solve a brak-
ing task in a simple 2D environment containing one
stationary object. We manipulated the visual informa-
tion that the agents received from the environment and
investigated how the evolved braking strategies chan-
ged depending on the visual information available to
the agents.

We would like to reiterate that our goal was not to
design a controller for the braking task but to use the
evolution of CTRNNs to explore the different strate-
gies that an agent receiving a particular type of optical
information can use to solve the braking task. Our
choice of CTRNNs as controllers was based on their
dynamical properties. As they are capable of producing
dynamically complex and non-reactive behaviors, they
allow us to simulate the dynamics of perception and
action (Warren, 2006) and to explore a larger space of
possible braking strategies. The significance of our
simulations lies in two main aspects: (1) the simulation
set-up was based on an experimental task from percep-
tion/action research and (2) the different information
variables that the agents received from the environment
were those hypothesized to be used and tested in experi-
mental investigations of visually guided braking in
humans.

We performed in-depth behavioral analyses of the
evolved agents to uncover the information variables
and the control strategies that could be effectively used
to perform the braking task. The results we obtained
showed that some information variables did not work
or only worked in limited conditions. Some of the
evolved agents used strategies that are proposed in the
literature, some agents relied on novel strategies that
are not reported in previous studies. Some of these stra-
tegies resulted in successful braking performance only
in the conditions in which they were evolved without
generalizing, but others did generalize.

The rest of this paper is organized as follows. As the
underlying framework is Gibson’s information-based
approach to perception and action, the next section
summarizes Gibson’s main ideas and the principles of
his theory. Then, we discuss the information variables
and control strategies that have been proposed in the
literature, together with the corresponding evidence. In
the third section, the general simulation set-up is
described. The fourth section is devoted to in-depth
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discussion of the results obtained from the analyses of
the agents, together with the implications for visual
control of braking in humans. Finally, we conclude
with a general discussion of the results and an outline
for future work.

2 An ecological approach to visually
guided braking

When an observer moves in an environment a pattern
of optical motion is created at the eye of the observer,
which is called ‘‘optic flow’’ (Gibson, 1979). Optic flow
provides information about the three-dimensional
structure of the environment, the observer’s motion
through and relative to the environment, as well as the
motion of the other objects in the environment. It is a
rich source of information that is both spatially and
temporally continuous.

Observers do not passively receive the information
from the optic flow. Perception is an active process in
which an observer moves around in the world to gener-
ate and pick up the information specifying the world
properties with respect to the observer. This formula-
tion has the following consequences. (1) Perception and
action are inseparable, continuous, and cyclic. We act
in order to perceive and what we perceive in turn guides
our actions. (2) Perception does not occur inside the
observer’s head. Instead, it occurs as the observer
moves in the environment, indicating that the observer
and his/her environment form an inseparable pair.
Thus, at the core of Gibson’s theory is the rejection of
any kind of dualism between an animal and its environ-
ment, between perception and action.

The optic flow is created by the relative motion
between an observer and his/her environment and there
is a geometry underlying the optic flow, which reflects
the structure of the surrounds. This means that the
observer has a spatio-temporal relation to the sur-
rounds. Then, the idea is that to achieve a given goal
behavior, the observer should move to create and main-
tain a certain pattern in the optic flow. These patterns
are called optical variables.

In the case of a driving-like braking task investigated
in this paper, there are a number of optical variables
proposed in the literature that could be used to solve
the task and different control strategies that are based
on different optical variables have been suggested.
Consider the case of approaching a stationary object
shown in Figure 1. As the observer approaches the
object, the optical structure available at the observer’s
eye changes. More specifically, the image size, b, of the
object expands. The image size (b) and the image expan-
sion rate ( _b) are the first two optical variables that are
available for the control of braking. However, the
nature of these optical variables undermines their use-
fulness. The same image size can be created by different

sized objects at different distances. Similarly, the same
image expansion rate can be produced by approaching
different sized objects at different speeds. Given the
complex nature of the environment we live in, relying
solely on b or _b might not be an efficient braking
strategy.

The third optical variable is t (tau), which can be
described as the ratio of image size to image expansion
rate. During a direct approach with constant velocity, t
specifies the time-to-contact (Tc) with the object (Lee,
1976):

t =
b

_b
= ! D

V
= Tc ð1Þ

In other words, t specifies the time remaining before
the observer collides with the object as long as the cur-
rent velocity is held constant.

Bingham (1995) suggested that braking could be
controlled by t using a strategy called the constant t
strategy. There are two versions of this strategy. The
strong version suggests that to stop at an object with-
out colliding, an observer should move as to keep t
constant at a certain value, the magnitude of which
depends on the initial conditions and the observer’s
braking capabilities. Even though this is an efficient
braking strategy that results in a linear decrease in velo-
city and shorter stopping times, no studies have found
evidence supporting the strategy. The weak version of
the constant t strategy suggests that t is used to deter-
mine the initiation and termination of deceleration. It
can be described as ‘‘never let t go below a certain criti-
cal value.’’ Unlike its strong version, which results in
continuously regulated braking, the weak version
results in impulsive braking, in which brake is used dis-
cretely. No studies have yet tested the use of the weak
version of the constant t strategy.

Yilmaz and Warren (1995) list two other strategies,
in which deceleration is not controlled continuously
but the brake is used in an impulsive fashion. In the
slam-on-the-brake strategy, an observer approaches the

D(t)

V

b

A

PoO

Projection
surface

1

Figure 1. A schematic view of an observer approaching a
stationary object of size A at a distance D, with a velocity V. PoO
denotes the point of observation. b is the image size of the
object on the observer’s retina at time t. The observer’s retina
(i.e., the projection surface) is approximated as being 1 unit
distance away from the PoO.
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object with a constant velocity and then applies maxi-
mum deceleration later in the approach to stop at the
target. The bang-bang strategy corresponds to applying
a large deceleration at the beginning of the approach
and then slowly drifting to the object, using one or
more deceleration spikes later to stop.

Lee (1976) also showed that the first time derivative
of t ( _t or tau-dot) can be used to control deceleration
during braking, as it provides information about
whether the current deceleration is adequate to stop at
the object without collision. A _t value of 21.0 corre-
sponds to a constant velocity approach. If _t .20.5,
the current deceleration is too high and if the decelera-
tion is maintained, the observer will stop short of the
object. If _t\! 0:5, the current deceleration is too low
and if it is maintained, it will result in crash. A _t value
of 20.5 provides a special case, which brings the obser-
ver to a stop right at the object with a constant decel-
eration. So, _t is the fourth optical variable that can be
used to control braking and the constant _t strategy sug-
gests that to stop successfully at a target, an observer
should move to maintain _t constant at a value around
20.5 (Lee, 1976).

Yilmaz and Warren (1995) tested the use of the con-
stant _t strategy in an experiment, which involved a
simulated braking task. In this task, participants viewed
a simulated approach to a set of road signs on a com-
puter screen and were asked to stop as close as possible
to the signs without colliding with them. They regulated
their deceleration using a brake composed of a spring-
loaded mouse. For each trial, the slope of the regression
line fitted to the time series of t was taken to be the
mean _t value for that trial.

The results showed that during approach, _t was not
held constant at 20.5 but _t trajectories oscillated
around 20.5 with a mean _t value around 20.51.
Yilmaz and Warren (1995) argued that once braking is
initiated, _t = ! 0:5 was used as a reference value in a
closed-loop control to regulate deceleration. More spe-
cifically, _t was used to control the required change in
deceleration and the adjustments of deceleration were
proportional to the difference between the current
value of _t and _t = ! 0:5.

Even though Yilmaz and Warren’s (1995) results
suggest that the participants used _t to control braking,
there are some issues that need to be considered. First
of all, some of their participants did not exhibit contin-
uous regulation of the brake and used an impulsive
braking strategy. Impulsive braking is also exhibited in
driving especially by novice drivers. However, no stud-
ies have yet investigated the optical variable(s) and the
control strategy(ies) that could be used in impulsive
braking. Another issue with any _t-based strategy is that
_t does not specify when to initiate braking. _t remains
at 21.0 unless braking is initiated. This implies that if _t
is used to control braking, humans must be relying on
another optical variable to initiate braking. The

question of how and when people initiate braking still
remains open.

Anderson and Bingham (2010) proposed an alterna-
tive optical variable and a new control strategy that
could be used to control braking during approach.
They suggested that to stop successfully at a target, an
observer should move to maintain a constant propor-
tion between the rate of change of t (i.e., _t) and t itself.
This is called proportional rate control. They also found
evidence supporting that proportional rate control is
used in visually guided reaching (Anderson & Bingham,
2010). Thus, proportional rate ( _t=t) is the fifth optical
variable that is available for the control of braking.

Proportional rate control offers a number of advan-
tages over any _t-based strategy. Firstly, proportional
rate control allows a range of proportional rate (PR)
values that will result in successful braking. Choosing
different PR values will determine whether braking
occurs faster or slower. This means proportional rate
control does not result in crashing when a slightly dif-
ferent PR value is chosen, which makes it more resis-
tant to perturbations, and therefore more stable, than a
_t-based strategy, which would require _t to be main-
tained around a single value of !0:5. Secondly, unlike
_t, PR evolves over time and can be used to initiate
braking without requiring any other optical variable.

In a subsequent study, Anderson and Bingham
(2011) investigated the visual information and the con-
trol strategy used to guide locomoting-to-reach beha-
vior (such as walking to open a door). They asked
participants to jog to a target location and bring their
nose to a stop at the target. Linear regression analysis
on the time series of t revealed that the mean _t values
were around 20.5, suggesting the use of _t to control
braking.

Anderson and Bingham (2011) also performed a
split-half analysis on the t and PR trajectories. Using
the median time sample in the trajectories, they split
the t and PR trajectories in two halves. For the PR tra-
jectories, the mean PR values were calculated for each
half. For the t trajectories, a regression line was fitted
to each half to calculate the mean _t values. The mean _t
values in the first and second halves were then com-
pared to examine whether _t values changed as partici-
pants approached the target. The analysis revealed a
significant difference between the mean _t values in two
halves, indicating that _t was not held constant.
Moreover, Anderson and Bingham (2010, 2011) found
that the slope of the first half was always greater than
that in the second half, which cannot be predicted by
the argument that _t is used as a reference value to con-
trol deceleration. Conversely, when the mean PR values
computed for the first and second halves were com-
pared, no significant difference between the mean PR
values was found. The PR was maintained constant at
around 20.2, indicating that participants controlled
their approach using a proportional rate control. These
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results introduce the possibility that proportional rate
control can also be used to control deceleration during
a driving-like braking task used by Yilmaz and Warren
(1995).

In light of the issues discussed above, we designed a
series of evolutionary robotics simulations. Our aims
were threefold: (1) to investigate the optical variable(s)
and the control strategy(ies) underlying impulsive brak-
ing; (2) to aid in resolving the existing questions in the
literature on visually guided braking by investigating
which control strategy underlies continuously regulated
braking; and (3) to explore the space of possible brak-
ing strategies by examining how braking strategies
change as the available information is manipulated.

We chose to use the evolutionary robotics techniques
as a modeling methodology because in addition to the
methodological advantages discussed above, evolving
these simple brain–body–environment systems offers
further advantages. Firstly, the underlying assumption
of this effort is that the behavior is the property of the
entire brain–body–environment system and cannot be
attributed to any subsystem in isolation (Beer, 2014).
These ideas are in line with the ecological approach to
perception and action, which emphasizes the insepar-
ability of animal and environment and perception and
action. Secondly, the evolutionary robotics techniques
allow us to simulate the whole perception–action cycle.
The movements of the agents in the environment create
the information that they receive and the information
they receive in turn guides their behavior. Finally, these
evolved agents are simple enough that we can analyze
them in detail to discover the strategies used to solve
the braking task.

3 The methods

3.1 The agent–environment set-up

A simulated braking task has been used in experiments
investigating the control strategies underlying visually
guided braking. Participants viewing a 3D display find
themselves speeding along a linear path over a simu-
lated ground surface toward a set of signs. They are
asked to use a brake to regulate their deceleration to
stop in front of the signs. The brake is a hand held joy-
stick or mouse, attached to the computer. This task and
set-up was used in our experiments involving human
subjects in Perception/Action Laboratory at Indiana
University, Bloomington. Accordingly, the evolution-
ary robotics simulations reported in this paper were
based on this well used experimental task.

The central idea of the ecological approach is that
behavior is controlled by task specific information that
is available in the optic flow and it emerges as control
laws relate information variables to action parameters.
Therefore, we employed five sensors, each detecting an
optical variable proposed in the literature, and then,

used evolutionary search to let the agents find their
own control laws. As the information in the optic flow
is created by the relative motion between an agent and
its environment, we placed these sensors on a simple
body that is capable of both moving along one dimen-
sion and braking.

We evolved model agents that were placed in a sim-
ple 2D environment with one stationary line object to
solve a simple braking task. The simulation set-up can
be seen in Figures 2a and 2b. The agent has a circular
body with a diameter of 30 and its ‘‘retina’’ is assumed
to be 1 unit distance away from its center. The first sen-
sor receives an input proportional to the image size (b)
of the object on the retina. The second sensor receives
an input proportional to the image expansion rate ( _b).
The third, fourth and the fifth sensors detect t, _t and
PR, respectively. The task of the agent is to stop as
close as possible to the object without hitting it. The
agent can only move forward, i.e., its heading is fixed
and it can only decelerate.

3.2 The neural model and the evolutionary
algorithm

The behavior of the agents is controlled by a CTRNN
with the following state equation:

Ti si = ! si +
XN

j= 1

wjis gj sj + uj

! "! "
+ Ii i= 1, $ $ $ ,N ð2Þ

where N is the number of the CTRNN nodes, s is the
state of each neuron, Ti is the time constant, wji is the
strength of the connection from the jth neuron to the
ith neuron, g is a gain term, u is a bias term,
s xð Þ= 1

1+ e!xð Þ is the standard logistic activation func-
tion and I is the external input. The output of a neuron
is Oi =s si + uið Þ. All neurons, except for the sensors,
have a gain of 1.0. The agent’s five sensors are fully
connected to four fully interconnected interneurons,
which are in turn fully connected to one motor neuron
controlling the deceleration of the agent. The network
architecture is given in Figure 2c. The agent’s decelera-
tion is calculated using the following formula:

! _v= k 3 Om ð3Þ

where Om is the output of the motor neuron and k is a
scaling constant, which was set to 3.0 in all of the simu-
lations reported below.

The connection weights (wji 2 !16, 16½ &), biases
(u 2 !16, 16½ &), time constants (T 2 1, 10½ &) and the
gains (g 2 1, 5½ &) were evolved using a population-
based, real-valued hill-climbing algorithm with fitness-
proportionate selection. New generations were created
by applying random Gaussian mutations to the selected
parents. The mutation variance was set to 0.45. The fit-
ness scaling multiple was 1.03. Simulations were
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integrated using the Euler method with an integration
step size of 0.1. For all evolutionary searches reported
below, the population size was 150 and the maximum
generation number was 5000.

3.3 Fitness evaluation

An agent’s performance was determined based on its
behavior in a number of evaluation trials. The object
had four different sizes (45.0, 55.0, 65.0, and 75.0). The
position of the object’s left end was fixed but the posi-
tion of its right end changed depending on the object’s
size. The horizontal position of the agent was also fixed
but the vertical distance between the agent and the
object varied. The agent had seven different initial dis-
tances from the object (120.0, 135.0, 150.0, 165.0, 180.0,
205.0, and 210.0) and six initial velocities (10.0, 11.0,
12.0, 13.0, 14.0, and 15.0). As a result, initial time-to-
contacts with the object varied between 8.0 and 21.0.
The object sizes and the initial distances were selected
so that the same image size could be created by each of
the four objects at one of the initial distances.

Each possible combination of the object size, agent’s
initial distance, and velocity was presented as a trial,
resulting in 43 73 6=168 evaluation trials. At the
beginning of each trial, the agent’s neural states were
initialized to zero. Then, the agent was placed in one of
the seven locations and its velocity was initialized to
one of the six velocities. The agent moved with a

constant velocity unless braking was initiated. A trial
ended when at least one of the following conditions was
met: (1) the maximum trial duration was reached, (2)
the agent’s velocity was 0.0 or (3) the agent collided
with the object, i.e., the vertical distance between the
object and the center of the agent was less than or equal
to the agent’s radius. The overall fitness of the agent
was determined by averaging its fitness over the 168
evaluation trials.

The fitness measure to evaluate the performance of
the agents was determined based on the instructions
given to human participants in our experiments. We
instructed participants to stop as close as possible to the
targets without hitting them. This instruction was cov-
ered with a distance and a velocity term in the fitness
function. To prevent the use of the ‘‘bang-bang’’ and
‘‘slam-on-the-brake’’ strategies, participants were also
instructed to use the brake as smoothly and continu-
ously as possible, avoiding sudden changes in decelera-
tion. This was translated into the fitness function as a
jerk term. Therefore, the fitness function had three com-
ponents to minimize: (1) the distance between the agent
and the object without colliding with the object, (2) the
velocity of the agent and (3) the total jerk for each trial.
Then, the performance measure to be maximized was:

PNumTrials
i= 1 1! di=dMaxið Þ+ 1! vi=vMaxið Þð Þ=2!Wjjerki

# $

NumTrials

ð4Þ

1

6 7 8 9

10

2 3 4 5

b

)c()b()a(

b τ τ PR

Sensors

Interneurons

Motor neuron

Figure 2. The basic agent–environment set-up used in the evolutionary robotics simulations. (a) The black circle represents the
agent and the line represents the stationary object. The agent has five sensors to detect b, _b, t, _t, and PR, respectively. (b) An
illustration of four object sizes (45.0, 55.0, 65.0, and 75.0) and seven initial distances from the object (120.0, 135.0, 150.0, 165.0,
180.0, 205.0, and 210.0). The left end of the object is fixed in the environment. Black crosses denote the object’s right end
depending on its size; grey crosses denote the position of the center of the agent’s body at each initial distance. Each square
represents a 15 unit× 15 unit area. (c) The architecture of the network that controls the agent’s behavior.
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where NumTrials is the total number of trials, di is the
vertical distance between the agent and the object at the
end of the ith trial and dMaxi is the initial vertical dis-
tance in that trial, vi is the agent’s velocity at the end of
the ith trial, and vMaxi is the agent’s initial velocity. Wj

is the weight of the jerk component.
The total jerk for each trial was calculated using the

following formula (Flash & Hogan, 1985):

jerki =
1

2

ðti

0

d3y

dt3

& '2

dt ð5Þ

where jerki is the time integral of the square of the mag-
nitude of the total jerk in the ith trial and ti is the corre-
sponding trial duration. At the end of a trial, the agent
has to apply braking to stop. Therefore, when the
agent’s velocity was less then or equal to 10% of its ini-
tial velocity, jerk did not contribute to the integral. It is
important to note that, as there is always some jerk, it
is not possible to evolve agents with perfect fitness val-
ues using this fitness measure unless the weight of the
jerk component is zero. For all of the simulations
reported below the maximum trial duration was set to
500 time steps.

We evolved two sets of agents. Rapid changes in
deceleration, which is a hallmark of impulsive braking,
result in high jerk. This implies that having a jerk term
in the fitness function might prevent agents from adopt-
ing an impulsive braking strategy. As a result, in the
first set of simulations, Wj, the weight of the jerk term
in the fitness function, was set to zero. In the second set
of simulations, Wj was set to 1000.0, which was deter-
mined empirically.

For each set of simulations, five groups of agents,
each receiving a different type of visual information,
were evolved. The agents in the first group received
only b. The input to the remaining four sensors was set
to zero. Similarly, the second, third, fourth and the fifth
groups received only _b, t, _t and PR, respectively. The
aim was to isolate the optical variables and then exam-
ine the braking strategies that they give rise to. From
now on, agents in different groups will be referred to
by the information they received such as t agents.
Likewise, the first and the second sets of simulations
will be referred as Experiment 1 and Experiment 2,
respectively. For each group in both experiments, 25
different evolutionary searches were performed with
different random seeds, resulting in 25 best-evolved
agents for each group.

3.4 Performance evaluation

We performed in-depth behavioral analyses of the
evolved agents to uncover the optical variables and the
control strategies that could effectively be used to per-
form the braking task. In addition to the optical

variables, the fitness measure has also an impact on the
agents’ behavior. In both experiments, a multi-criteria
fitness function was used to evolve the agents. As a
result, it is possible that an agent might attain a rela-
tively high fitness value by performing very well with
respect to one criterion, but performing on average with
respect to another. As both crashes and stopping too
short of the object indicate poor use of visual informa-
tion, it is important to examine the agents’ performance
in more detail, with respect to each of the distance and
velocity criteria of the fitness function.

For this purpose, we defined four classes of trials:
(1) crash trials: the trials in which the final velocity of
the agent (vfinal) was greater than zero when the final
distance between the agent and the object (dfinal) was
zero; (2) premature stops: the trials in which the agents
stopped too early, too far away from the object. Any
trial in which dfinal .15.0 (i.e., the agent’s radius) was
considered a premature stop; (3) failure-to-reach trials:
the trials that ended not because of a crash or a prema-
ture stop, but because the maximum trial duration of
500 time steps was reached. Failure-to-reach trials
together with crash trials and premature stops consti-
tute the unsuccessful trials; (4) successful trials: the
trials in which the agents stopped safely, very close to
the object. Any trial in which 0<dfinal<15.0 when
vfinal=0 was considered a successful trial. It is impor-
tant to note that we do not expect either our human
participants or the evolved agents to have 100% suc-
cessful trial rate. Given the nature of the task, crashes
and premature stops do occur and are acceptable as
long as their numbers are small. Our analysis focuses
on the performance and the behavior of the agents in
successful trials.

4 The results

4.1 Testing the constraints for a given behavioral
capability

What can these evolved brain–body–environment sys-
tems tell us about the visual control of braking in
humans? They can allow us to explore the constraints
on the braking behavior. To illustrate, we first evolved
a set of agents using a fitness function, which minimized
only the velocity of the agent and the distance between
the agent and the object. In these simulations, the trial
duration was not limited. The results showed that all of
the evolved agents reduced their velocities to almost
zero values right at the beginning of the trials and then
slowly drifted to the object, resulting in extremely long
trial durations. Besides, some of these evolutionary
searches could not be completed within feasible time
because of the near-zero velocities of the agents and
they had to be stopped before reaching the maximum
number of generations. This type of behavior was never
observed in humans.
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To prevent agents exhibiting this behavior, trial
duration was included in the fitness function, which
forced all agents to adopt the slam-on-the-brake strat-
egy. This suggests that time is a key constraint that
gives rise to the slam-on-the-brake strategy. We, then,
excluded trial duration from the fitness function but
time was included indirectly in the fitness measure by
limiting the trial duration. This change in the fitness
function successfully eliminated the slam-on-the-brake
strategy. However, all agents were found to be using an
impulsive braking strategy, details of which will be dis-
cussed in more detail in the following section.
Continuously regulated braking was observed only
when trial duration was limited and jerk was also
included in the fitness function. This finding suggests
that jerk is also an important constraint that affects
braking behavior. It is especially important in continu-
ously regulated braking.

4.2 Testing the existing hypotheses, forming new
ones

4.2.1 Comparison of the optical variables. What impact do
different optical variables have on braking perfor-
mance? Did all of the agents perform the task compar-
ably well? In other words, did all optical variables
result in successful performance? Or are there any opti-
cal variables that yielded significantly better perfor-
mance? To answer these questions, we first examined
how well the different groups of agents in each experi-
ment performed the task.

The fitness values of the best-evolved agents in
Experiment 1 and Experiment 2 can be seen in Figures
3a and 3b, respectively. The gray circles represent the
mean fitness values of the 25 best-evolved agents, with
error bars indicating 61 standard deviation. The black
squares correspond to the best-evolved agent that
attained the highest fitness value out of 25 agents.

From now on, the best of the best-evolved 25 agents in
each group will be referred as ‘‘the best’’ agent for that
group.

The numbers of successful and unsuccessful trials of
the best agents are given in Table 1. In Experiment 1,

Table 1. The numbers of successful and unsuccessful trials for the best agents in Experiment 1 and Experiment 2.

Unsuccessful trials Successful trials Successful trial rate

Crash trials Premature stops Failure-to-reach trials

Experiment 1
The b agent 9 4 4 151 89.9%
The _b agent 8 0 0 160 95.2%
The t agent 20 0 0 148 88.1%
The _t agent 4 0 36 128 76.2%
The PR agent 0 0 0 168 100.0%

Experiment 2
The b agent 67 78 0 23 16.7%
The _b agent 47 70 2 49 29.2%
The t agent 28 16 0 124 73.8%
The _t agent 52 0 8 108 64.3%
The PR agent 20 32 0 116 69.0%
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Figure 3. Fitness values of the best-evolved agents (a) in
Experiment 1, in which the weight of the jerk term (Wj) was 0.0
and (b) in Experiment 2, with Wj=1000.0. The gray circles
represent the mean fitness values of the 25 best-evolved agents,
with error bars indicating ± 1 standard deviation. The black
squares correspond to the best-evolved agent that achieved the
highest fitness value out of 25 agents.
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all of the best agents performed the task with a fitness
value .98% and a successful trial rate .75%. The
most successful agent was the best PR agent (99.99%)
with no unsuccessful trials and it stopped right at the
object (see Table 2 in Appendix A for the final stopping
distances). The next successful agent was the best t
agent (99.84%), which was followed by the best _t agent
(99.20%), the best b agent (98.72%), and the best _b
agent (98.51%), respectively.

To confirm these results, a Kruskal–Wallis1 test on
the fitness values of all 125 best-evolved agents (5
groups3 25 best agents in each group) was conducted
to compare the effect of the optical variables on the fit-
ness values. The analysis indicated a significant effect
of the optical variable, x2(4)=104.12, p\.001, with an
effect size of 0.840. Post hoc comparisons using Mann–
Whitney tests with Bonferroni correction revealed that
the fitness values of the _b agents were significantly
higher than those of the b agents (p\.001). The fitness
values of the _t agents were significantly higher than
those of _b agents (p\.001). The only non-significant
comparison was between the t agents and those of PR
agents (p=1.0), indicating the t agents and the PR
agents performed the task equally well. Both t and PR
agents have fitness values that were significantly higher
than those of the _t agents (both at p\.001 significance
level).

In Experiment 2, the best b and the _b agents could
not perform the task at all. Both had a very low success-
ful trial rate (Table 1). As a result, these agents will be
excluded from further analysis. The best performances
were again achieved by the best PR agent (86.73%) and
the best t agent (86.69%). These agents were followed
by the best _t agent (84.24%). The Kruskal–Wallis test
on the fitness values of the 125 best agents evolved in
Experiment 2 again revealed a significant effect of the
optical variable, x2(4)=85.27, p\.001, with an effect
size of 0.688. As in Experiment 1, post hoc comparisons
using Mann–Whitney tests with Bonferroni correction
indicated that the fitness values of the PR agents were
not significantly different than those of the t agents
(p=1.0). Both groups performed significantly better
than the _t agents (both at p\.001 significance level).
Even though the best _t agent achieved a performance
close to the best PR and t agents, pairwise comparisons
revealed that overall the _t agents did not perform the
task significantly better than the b agents (p=1.0) and
the _b agents (p=.95). Therefore, the _t agents are also
considered unsuccessful and will be excluded from fur-
ther analysis.

Why were the t and PR agents successful in perform-
ing the task, but not the _t agents? As previously stated,
unlike _t that stays constant at 21.0 unless braking is
initiated, both t and PR evolve over time. As a result,
the t and PR agents experienced change in the visual
information from the beginning of the trials. However,
the _t agents had to initiate braking not only to stop but

also to experience change in the visual information,
which probably made the task harder for the _t agents.
The poorer performance of the _t agents in Experiment
2 can be taken as evidence indicating that, when iso-
lated from other variables, _t alone is not sufficient to
control braking successfully. What this means is that
with _t, there is no information that can be used to indi-
cate when to start braking. In contrast, the evolving t
and PR trajectories can be so used.

To sum up, in Experiment 1, all best agents per-
formed the task successfully whereas only the t and PR
agents were successful in both experiments. The t and
PR agents were also the best performing agents in both
experiments and the analysis revealed that they per-
formed the task equally well. These results suggest that
when the optical variables are isolated, the optical vari-
ables t and PR result in better braking performance
than b, _b, and _t. Now that we have identified the agents
that can successfully solve the braking task, the next
step in our analysis is to investigate these agents’ beha-
vior in more detail.

4.2.2 Impulsive vs. continuously regulated braking. How
does the behavior of the successful agents change
depending on the optical variable and on the fitness
measure? Do the agents exhibit impulsive braking or
do they regulate deceleration continuously? To answer
these questions, we examined the velocity and decelera-
tion trajectories of the successful agents, together with
the resulting times series of the optical variables.

The aim of the Experiment 1 was to explore the
informational basis of impulsive braking and all five
best agents evolved in Experiment 1 were found to be
using an impulsive braking strategy. The best b agent
used the slam-on-the-brake and the bang-bang strate-
gies. The best _b agent was found to be using a pure
bang-bang strategy. As expected, these strategies
resulted in highly variable stopping distances (see
Table 2 in Appendix A). The analysis of the t trajec-
tories of the best t agent in Experiment 1 suggested
that this agent used the weak version of the constant t
strategy (Figure 4). In other words, the agent used t to
determine the initiation and termination of deceleration
(Figure 5). The mean t value at which the first braking
is initiated is 6.68 (SD=0.19). The mean t value, at
which the brake was released, is 13.79 (SD=0.40) and
the mean t at which the final braking is initiated is 7.59
(SD=0.04).

All three agents examined so far exhibited discrete
impulsive braking, in which brake is used in an on-or-
off fashion. However, what separates the best tagent
from the best b and _b agents is that it initiated and ter-
minated braking on the basis of the optical variable t.
This braking strategy resulted in an 88.10% successful
trial rate and the agent stopped very close to the target
with a very small variation in the final stopping dis-
tances (see Table 2 in Appendix A). This suggests that
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even though the weak version of the constant t strategy
is impulsive, it is a very efficient impulsive braking
strategy that brought the agent to a stop very close to
the target in the majority of the trials.

The deceleration trajectories of the best _t and PR
agents in Experiment 1 revealed a second type of
impulsive braking, in which brake is applied in a peri-
odic fashion, creating oscillations in deceleration.
Oscillations in deceleration, in turn, cause oscillations
in t, _t and PR (Figure 6). This oscillatory impulsive
braking behavior has not been reported in the literature
on visually guided braking before. Even though the
best _t and PR agents used the brake in a periodic

fashion, the oscillations in deceleration created oscilla-
tions with increasing amplitude in the _t and PR trajec-
tories of the best _t agent. However, the oscillatory
deceleration of the best PR agent produced oscillations
with decreasing amplitudes in _t and PR trajectories.
Unlike the oscillations with increasing amplitude, the
decreasing amplitude of the oscillations in the _t and
PR trajectories of the best PR agent kept those vari-
ables bounded within a region. This might be the rea-
son why the best PR agent performed the task better
than the best _t agent.

To recapitulate, there are two main findings in
Experiment 1: (1) two different classes of impulsive
braking behaviors were observed, including one not
reported in previous studies: discrete impulsive braking,
in which the brake is used in an on/off fashion and
oscillatory impulsive braking, in which the brake is
used in a periodic fashion; and (2) the weak version of
the constant t strategy is an efficient impulsive braking
strategy, in which the optical variable t is used to initi-
ate and terminate braking.

The aim of Experiment 2 was investigate optical
variables and the control strategies used in continu-
ously regulated braking. The only successful agents in
Experiment 2 were the best t. and PR agents. Both
agents regulated their deceleration continuously in all
trials, indicating that including a minimum jerk criter-
ion in the fitness measure, indeed, resulted in continu-
ously regulated braking (Figure 7). Two competing
strategies for the continuously regulated braking are
the constant _t strategy (Lee, 1976; Yilmaz & Warren,
1995) and the proportional rate control (Anderson &
Bingham, 2010, 2011). The next step in our analysis is
to investigate whether the best t and PR agents evolved
in Experiment 2 used one of these strategies.

4.2.3 Constant _t strategy vs. proportional rate
control. CTRNNs are proved to be universal approxi-
mators of smooth dynamics (Funahashi & Nakamura,
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Figure 6. Sample deceleration trajectories of the (a) best _t agent and (b) best PR agent in a successful trial in Experiment 1,
together with the corresponding t, _t, and PR trajectories.
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1993; Kimura & Nakano, 1998). This means that even
though the best t and PR agents evolved in Experiment
2 received only t and PR as the visual information,
they could, in theory, derive _t and PR fr the informa-
tion that they received and use them to solve the task.
Therefore, we analyzed both the _t and PR trajectories
of these agents.

As in Yilmaz and Warren (1995), before performing
any analysis, we first windowed the trajectories to iso-
late the portions of the trials, in which deceleration was
regulated continuously. To keep the total jerk low, the
agents start braking slowly right at the beginning of the
trials. For a brief period, the motor output of the
agents is the same for all trials. It, then, starts to
diverge. The point at which the deceleration trajectories
start to diverge was taken to be the beginning of the
window. The end point of the window was chosen
based on the t trajectories so that the final increase in t
to infinity together with the preceding small plateau
was eliminated.

Sample t, _t, and PR trajectories of the best t and
PR agent can be seen in Figures 8a and 8b, respec-
tively. The dotted lines represent the beginning and end
of the window. The analyses reported below were

applied to the portion of the trajectories that fell within
the window. For each agent, we first performed a linear
regression analysis of the time series of t to estimate
the mean _t. As in Yilmaz and Warren (1995), for each
trial, the slope of the regression line was taken as the
mean _t for that trial. For the best t agent, the overall
mean _t=20.57 across all trials, with SD=0.068. For
the best PR agent, the overall mean _t = ! 0:61, with
SD=0.038. For both agents, linear regression resulted
in R2 values .0.96 in all trials. These results show that
both agents had an overall mean _t around 20.6, which
is slightly smaller than _t=20.5 as predicted by the
constant _t strategy.

We then performed the split-half analysis on the t
trajectories of the best t and PR agents to determine
whether _t was constant or changing during approach.
The split-half analysis with a paired t-test on the mean
_t values of the best t agent revealed a significant differ-
ence between the _t values in the first and second halves,
t(30)=243.54, p\.001, indicating that _t was not held
constant. The mean _t in the first half was 20.70 with
SD=0.065 and the mean _t in the second half was
20.46 with SD=0.070 (Figure 9a). Consistent with the
previous findings in the literature, the slope of the first
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Figure 7. Sample velocity and deceleration trajectories of (a) the best t agent and (b) the best PR agent in Experiment 2.
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half was greater than that of the second half. These
results indicate that the best t agent did not use the
constant _t strategy to control braking.

The split-half analysis on the mean _t values of the
best PR agent also revealed a significant difference
between the mean _t values in each half, t(28)=215.14,
p\.001. The mean _t in the first half was 20.69 with
SD=0.024 and the mean _t in the second half was
20.52 with SD=0.055 (Figure 9b). Again, the slope of
the first half was greater than that of the second half.

Finding a significant difference indicates that _t was not
held constant during approach, which means that the
best PR agent did not use the constant _t strategy,
either.

We, then, performed the split-half analysis with a
paired t-test on the mean PR values of the best t and
PR agents. For the best t agent, the split-half analysis
revealed a significant difference, t(30)=26.83, p\.001.
The mean PR values in the first and second halves were
!0:06 (with SD=0.015) and !0:05 (with SD=0.016),
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Figure 8. Sample t, _t, and PR trajectories of (a) the best t agent and (b) the best PR agent in Experiment 2. The dotted lines
represent the beginning and end of the window. Statistical analyses were performed on the portions of the trajectories that fell
within the window.
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respectively (Figure 10). However, finding a significant
difference between the mean PR does not completely
rule out the use of proportional rate control, as propor-
tional rate control allows a range of PR values that will
result in successful braking. Given that the mean PR
values in each half are very close to each other, it can
still be argued that the best t agent used a version of
the proportional rate control, in which the PR was not
held constant, but kept bounded within a region.

The split-half analysis on the mean PR values of the
best PR agent reveled no significant difference,
t(28)=21.503, p=.144. The mean PR values in the
first and the second halves were 0.062 (with SD=0.016)
and 0.059 (with SD=0.008), respectively (Figure 10).
The lack of significance indicates that the PR values
were kept constant during approach, suggesting the
best PR agent used proportional rate control.

To sum up, contrary to the evidence provided by
Yilmaz and Warren (1995), our results provide no evi-
dence in favor of a _t-based strategy such as the constant
_t strategy. A main assumption made in our simulations
is that only one optical variable is available to be used
to control braking. Under such circumstance, our
results support the hypothesis that the optical variable

proportional rate is alone sufficient to control braking
successfully and proportional rate control is used in
continuously regulated braking. Indeed, two different
proportional rate control strategies were observed: (1)
the weak version, in which the PR was not held con-
stant, but kept bounded within a region and (2) the
strong version, in which the PR was held constant to
stop successfully at the target.

5 General discussion

The field of evolutionary robotics has emerged from
the need to develop an automatic design process for
building control systems for robots. However, research-
ers have recently begun to use the evolutionary robotics
techniques as a modeling methodology for studying
cognition and behavior. Research in the last decade has
proven that these techniques can be useful tools in the
study of cognition and behavior in different ways. For
instance, they can provide existence proofs. Izquierdo-
Torres and Harvey (2007) challenged the view that
synaptic plasticity is necessary for learning to occur by
evolving CTRNNs with fixed weights that can produce
Hebbian-like learning. The analysis of the network
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revealed that the learning behavior arises from the
interaction between slow and fast acting components of
the network. Izquierdo-Torres and Harvey’s (2007)
results do not, by all means, indicate that the same
mechanism is also responsible for learning in biological
systems. They also do not undermine the importance of
synaptic plasticity. However, they open up new per-
spectives on the mechanisms underlying learning and
can help us formulate new theories and hypotheses that
can be tested empirically.

Using an approach that they call ‘‘comparative psy-
chology of evolved agents and people,’’Ward and Ward
(2008) investigated the psychological principles under-
lying selective attention by employing evolutionary
robotics simulations and experiments involving human
subjects. Their work demonstrated the presence of reac-
tive inhibition in both the evolved agents and people,
suggesting that it is an essential mechanism for selective
attention.

The evolutionary robotics techniques have also been
applied to model experimental paradigms from psy-
chology. Based on Auvray, Lenay, and Stewart’s (2009)
minimalist perceptual crossing experiment, Di Paolo,
Rohde, and Iizuka (2008) developed a series of evolu-
tionary robotics simulations to investigate the dynamics
of social interaction. They successfully replicated the
results of the original study, indicating that the recogni-
tion of the presence of another’s agency does not neces-
sarily require complex cognitive mechanisms and
simple solutions can emerge from the dynamics of the
interaction process itself. Their results also generated
additional hypotheses that can be tested empirically.

In light of these studies, the present work utilized
evolutionary robotics techniques as a hypothesis gen-
erator to investigate the visual information and the
control strategies used in the context of a driving-like
braking task. Based on a widely used experimental
paradigm from psychology, a series of evolutionary
robotics simulations were developed to aid in resolving
the existing questions as to the control strategies under-
lying continuously regulated braking and to investigate
the information variable(s) and the control strategy(ies)
used in impulsive braking. Model agents were evolved
to solve a braking task in a simple 2D environment
containing one stationary object. The paper focused on
the in-depth behavioral analyses of the evolved agents
to uncover the optical variables and the control strate-
gies used by the agents to solve the braking task.

Based on the geometry of the looming objects and
the cost function used in the simulations, it is also pos-
sible to design an optimal feedback controller for the
braking task being investigated in this paper. Providing
extra constraints on the derived controller can result in
different solutions and much can be learned from such
an analysis. However, designing an optimal controller
requires choosing a class of controller to utilize. This
choice can greatly influence the results, constituting

additional assumptions of the model. Furthermore,
only the simplest such classes can be analytically opti-
mized. We chose to evolve CTRNNs to let the agents
find their own control strategies, and thus, to explore a
larger space of possible braking strategies with minimal
a priori assumptions.

The results of our study can be summarized under
five main findings. The first main finding is that beha-
viors similar to human behavior were observed only
when the constraints were selected correctly. Our results
confirm that time and jerk are important constraints
that shape braking behavior. More specifically, time is
a major constraint on impulsive braking and jerk is a
key constraint on continuously regulated braking. If we
consider the cases in which constraints that underlie an
observed behavior are not clear or known, our results
suggest that evolutionary robotics simulations can be
useful tools in determining the necessary and/or suffi-
cient constraints for a given behavior.

The second main finding of our simulations is that
when only one optical variable is available to control
braking, t and PR are the most efficient optical vari-
ables to solve a driving-like braking task investigated in
this paper, as only these two variables gave rise to suc-
cessful braking performance in both experiments.
When the task demands were increased by adding a
jerk term, the _t agents could not perform the task suc-
cessfully. Why did _t agents fail to perform the task
while both t and proportional rate agents were very
successful? We argue that the answer lies in the nature
of the optical variables. While approaching an object
with a constant velocity, both t and PR evolve over
time, resulting in a change in the visual information.
However, _t stays constant at 21.0 unless braking is ini-
tiated. This implies that _t agents had to ‘‘act’’ to experi-
ence change in the visual information, which probably
made the task ‘‘harder’’ for the _t agents, as a result,
gave rise to a poor performance. The failure of the _t
agents in Experiment 2 can be taken as evidence indi-
cating when isolated from other optical variables, _t
alone is not sufficient to control braking.

The third major finding of the present work is that
two different classes of impulsive braking behaviors
were observed: (1) discrete impulsive braking, in which
the brake is used in an on-or-off fashion; and (2) oscilla-
tory impulsive braking, in which brake is used in a peri-
odic fashion. There were two versions of oscillatory
impulsive braking. In the first version, the oscillations
in deceleration created oscillation with increasing
amplitudes in t, _t and PR. In the second one, the oscil-
lations in deceleration created oscillation with decreas-
ing amplitudes in t, _t, and PR. Both of these oscillatory
braking behaviors have not been reported in the litera-
ture before.

As previously indicated, no studies have yet investi-
gated the optical variable(s) and the control strate-
gy(ies) used in impulsive braking. The fourth main
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finding of our work is that one promising impulsive
braking strategy is to use t to initiate and terminate
braking. The best t agent in Experiment 1 was found
to be using the weak version of the constant t strategy
proposed by Bingham (1995). Even though, this is a
discrete impulsive braking strategy, it is very efficient in
that it brought the agent to a stop right at the object.

Finally, the fifth main finding of our simulations is
that our results cast doubt on the use of the constant _t
strategy to control braking. Contrary to the evidence
provided by Yilmaz and Warren (1995), none of the
evolved agents was found to be using a _t-based strategy
such as the constant _t strategy. Our results support the
hypothesis that the proportional rate control is used
when regulating the brake continuously. Two different
proportional rate control strategies were observed: (1)
the weak version, in which the proportional rate was
not held constant during braking, but kept bounded
within a region; and (2) the strong version, in which the
proportional rate was held constant to stop successfully
at the target.

One of the criticisms of using evolutionary robotics
simulations in the study of human behavior and cogni-
tion is that these evolved agents are too simple to tell
us anything about human behavior. This is a fair criti-
cism. However, what is generally ignored in this criti-
cism is that CTRNNs are universal approximators of
smooth dynamics (Funahashi & Nakamura, 1993;
Kimura & Nakano, 1998). This means that the mathe-
matics underlying these simple brain–body–environ-
ment systems are quite powerful. Our results show that
once the constraints on behavior are selected correctly
and the appropriate fitness measure is chosen, it is pos-
sible to capture important aspects of human behavior
even with these simple agents, which have ‘‘brains’’
consisting of four neurons.

One important aspect of continuously regulated
braking that was not captured by our simulations is the
initiation of braking. Our results do not provide an
answer to the question when humans initiate braking.
We argue that this is probably due to the minimum jerk
criterion included in the fitness measure. The minimum
jerk criterion caused the agents to initiate braking as
soon as trials started. In our simulations, the fitness
measure minimized the total jerk in a trial. This means
that the agents were penalized even for the slightest
jerk. The effect of the jerk in the fitness measure can be
alleviated by: (1) punishing the agents if the jerk is
higher than a certain threshold value; or (2) penalizing
agents based on the maximum jerk in a trial. With
these modifications, it might be possible to capture the
initiation of braking.

As stated above, our results revealed a second type
of impulsive braking in which brake is used in a peri-
odic fashion, resulting in oscillations in t, _t, and pro-
portional rate. Then, the question is: what causes those
oscillations? How and when do they arise? Relatedly,

those oscillations should disappear when switching
from impulsive braking to continuously regulated brak-
ing. Then, what causes those oscillations to disappear?
Such questions can be answered by analyzing the
underlying dynamics of the agent–environment system,
using tools from dynamical systems theory. The results
obtained from such analysis may provide insights into
the control of braking in humans and help us form new
hypotheses that can be tested in further experiments.

Unlike the natural environment we live in, which
provides abundant information, the simulated environ-
ment of the agents provided only one type of informa-
tion. Our aim was to isolate each type of optical
variable and to investigate what kind of braking strate-
gies emerge for each of these variables. Our results indi-
cated that proportional rate is alone sufficient to
control braking successfully whereas _t is not. However,
allowing agents to receive more than one optical vari-
able could yield different results. For example, if agents
receive _t together with t, it might be possible to
observe a _t-based strategy as proposed by Yilmaz and
Warren (1995). Therefore, the next step in the analysis
is to evolve agents that receive a combination of optical
variables and to investigate what kind of braking stra-
tegies emerge from combinations of different optical
variables.

Finally, the third step in the analysis is to allow
agents to receive all available information. After evol-
ving these agents, biological lesioning and informa-
tional lesioning analyses (Keinan, Meilijson, & Ruppin,
2003; Aharonov, Segev, Meilijson, & Ruppin, 2003)
can be carried out to investigate whether it is possible
to observe a tendency in the evolved agents to rely on
certain optical variables even if all the variables are
available. We believe that such analyses can provide
more insights into the optical variables and the control
strategies used in visually guided braking.

In addition to isolating the optical variables, another
assumption made in the evolutionary robotics simula-
tions reported in this paper is the absence of biological
noise in extracting the information variables from the
optic flow. Introducing noise into the optical variables
and allowing the noise to propagate in the system could
affect the behavior of the agents and lead to changes in
the observed braking strategies. Another possible future
direction that can be pursued both experimentally and
using evolutionary robotics simulations is to include
acceleration in the task. Finding support in favor of the
proportional rate control in such a study can provide
further evidence that proportional rate control is used
in visually guided braking.
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Note

1. Even though, in theory, the fitness values change between
0.0 and 1.0, the evolutionary search selects for the best
performing agents, which causes our data set to be skewed
towards the higher end of the fitness distribution, making
it non-normal. Therefore, a non-parametric test was used
to test the effect of the different optical variables on the
fitness values of the evolved agents.
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Appendix A

Table 2. The mean (with standard deviation), and the maximum final distances and the final velocities of the best agents in
Experiments 1 and 2.

Final distance Final velocity

M (SD) Max M (SD) Max

Experiment 1
Image size 2.87 (3.10) 19.10 1.27 (1.32) 3.62
Image expansion rate 4.08 (2.92) 12.36 1.64 (0.41) 2.32
Tau 0.14 (0.089) 0.28 0.30 (0.37) 0.98
Tau-dot 2.41 (2.57) 11.76 0.13 (0.12) 0.35
Proportional rate 0.03 (0.06) 0.4 0.0 0.0

Experiment 2
Image size 36.22 (24.83) 99.20 6.41 (2.54) 11.22
Image expansion rate 16.91 (10.08) 44.00 4.65 (2.21) 9.19
Tau 7.73 (5.36) 17.54 4.93 (2.11) 8.52
Tau-dot 4.35 (2.83) 9.32 4.26 (3.31) 10.31
Proportional rate 9.54 (6.20) 20.70 2.62 (1.19) 4.52

The mean final distance includes the final distances in successful trials together with premature stops and failure-to-reach trials; the mean final
velocity includes the final velocities in crash trials and failure-to-reach trials.
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